SUBROUTINE unfold_w(scrcoul_g_in, iq) USE kinds, ONLY : DP USE symm_base, ONLY : nsym, s, time_reversal, t_rev, ftau, invs USE gwsymm, ONLY : ig_unique, ngmunique, use_symm, sym_ig, sym_friend USE gvect, ONLY : g, ngm, ecutwfc, nl USE modes, ONLY : nsymq, invsymq USE gwsigma, ONLY : ngmsco, sigma, sigma_g, nrsco, nlsco, fft6_g2r, ecutsco, ngmpol USE freq_gw, ONLY : fpol, fiu, nfs, nfsmax, nwcoul, wcoul USE control_gw, ONLY : zue, convt, rec_code, modielec, eta, godbyneeds, padecont USE qpoint, ONLY : xq USE cell_base, ONLY : at IMPLICIT NONE COMPLEX(DP) :: scrcoul_g_in(ngmpol, ngmpol, nfs, 1) COMPLEX(DP) :: scrcoul_g_tmp(ngmpol, nfs) COMPLEX(DP) :: phase INTEGER :: ig, igp, npe, irr, icounter, ir, irp !counter INTEGER :: isym, iwim, iq, iw INTEGER :: done, ngmdone INTEGER :: ngmdonelist(ngmpol) INTEGER :: gmapsym(ngm,48) COMPLEX(DP) :: eigv(ngm,48) LOGICAL :: not_unique REAL(DP) :: xq_loc(3) !unpacks the symmetry reduced list of G vectors to fill the whole W !matrix before writing this to file, alternatively could just !write the symmetry reduced matrix to file... but right now this isn't necessary. gmapsym(:,:) = 0 CALL gmap_sym(nsym, s, ftau, gmapsym, eigv, invs) do isym = 1, nsymq WRITE(6,'(3i4)') s(:,:,isym) WRITE(6,*) WRITE(6,'(3i4)') s(:,:,invs(isym)) WRITE(6,*) WRITE(6,*) enddo !Cases where no unfolding needs to be done: if(.not.use_symm)GOTO 126 if(nsymq.eq.1)GOTO 126 !end Cases !stack ngmdone list with vectors that aren't unique: xq_loc = xq CALL cryst_to_cart(1, xq_loc(:), at, -1) write(6,*) xq_loc ngmdonelist(:) = 0 ngmdone = 0 do ig = 1, ngmunique ngmdone = ngmdone + 1 ngmdonelist(ngmdone) = ig_unique(ig) enddo IF(modielec) then !only diagonal needs unfolding: DO ig = 1, ngmunique DO done = 1, ngmdone if (ig.eq.ngmdonelist(done)) then ! write(6,'("Cycling: unique or already unfolded.")') CYCLE endif ENDDO DO iwim = 1, nfs DO isym = 1, nsymq scrcoul_g_in(gmapsym(ig_unique(ig),invs(isym)), gmapsym(ig_unique(ig),invs(isym)),iwim,1) = scrcoul_g_in(ig_unique(ig), ig_unique(ig), iwim,1) ENDDO ENDDO ENDDO ELSE DO ig = 1, ngmpol DO done = 1, ngmdone if (ig.eq.ngmdonelist(done)) then ! write(6,'("Cycling: unique or already unfolded.")') GOTO 128 endif ENDDO !still need to unfold this vector so we append it to the done list: ngmdone = ngmdone + 1 ngmdonelist(ngmdone) = ig !and unfold it with the correct correspondence ig has sym_friend(ig) where R^{-1} ig = ig_unique: DO iwim = 1, nfs DO igp = 1, ngmpol scrcoul_g_tmp(igp,iwim) = scrcoul_g_in(sym_friend(ig), igp, iwim, 1) ENDDO ENDDO !the relationship R between ig and sym_friend(ig) is given by sym_ig. DO iwim = 1, nfs DO igp = 1, ngmpol !For symmetry operations with fraction translations we need to include: !the \tau_{r} part which applies to the original G, G' rotation on R !e^{-i2\pi(G - G')\cdot\tau_{R}} = eigv(G)*conjg(eigv(G')) phase = eigv(sym_friend(ig), sym_ig(ig))*conjg(eigv(igp, sym_ig(ig))) scrcoul_g_in(ig, gmapsym(igp, invs(sym_ig(ig))), iwim, 1) = scrcoul_g_tmp(igp, iwim)*phase ENDDO ENDDO 128 CONTINUE ENDDO ENDIF 126 CONTINUE !Zero wings of W: !IF(iq.eq.1) then ! Write(6, '("Zeroing Wings of W.")') ! if(godbyneeds) then ! do igp = 2, ngmpol ! scrcoul_g_in(1,igp,1,1) = ( 0.0d0, 0.0d0) ! scrcoul_g_in(1,igp,2,1) = ( 0.0d0, 0.0d0) ! enddo ! do igp = 2, ngmpol ! scrcoul_g_in(igp,1,1,1) = ( 0.0d0, 0.0d0) ! scrcoul_g_in(igp,1,2,1) = ( 0.0d0, 0.0d0) ! enddo ! endif !How to zero for pade continuation? ! if(padecont) then ! do igp = 2, ngmpol ! do iwim = 1, nfs ! scrcoul_g_in(1,igp,iwim,1) = (0.0d0, 0.0d0) ! scrcoul_g_in(igp,1,iwim,1) = (0.0d0, 0.0d0) ! enddo ! enddo ! endif !ENDIF !do iw = 1, nfs ! write(6,*) ! do ig = 1, 14 ! write(6,'(14f14.7)') real(scrcoul_g_in(ig,1:14,iw,1)) ! enddo ! write(6,*) !enddo END SUBROUTINE unfold_w