! ! Copyright (C) 2001-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- subroutine sgam_ph (at, bg, nsym, s, irt, tau, rtau, nat, sym) !----------------------------------------------------------------------- ! ! This routine computes the vector rtau which contains for each ! atom and each rotation the vector S\tau_a - \tau_b, where ! b is the rotated a atom, given by the array irt. These rtau are ! non zero only if fractional translations are present. ! USE kinds, ONLY : DP implicit none ! ! first the dummy variables ! integer, intent(in) :: nsym, s (3, 3, 48), nat, irt (48, nat) ! nsym: number of symmetries of the point group ! s: matrices of symmetry operations ! nat : number of atoms in the unit cell ! irt(n,m) = transformed of atom m for symmetry n real(DP), intent(in) :: at (3, 3), bg (3, 3), tau (3, nat) ! at: direct lattice vectors ! bg: reciprocal lattice vectors ! tau: coordinates of the atoms logical, intent(in) :: sym (nsym) ! sym(n)=.true. if operation n is a symmetry real(DP), intent(out):: rtau (3, 48, nat) ! rtau: the direct translations ! ! here the local variables ! integer :: na, nb, isym, ipol ! counters on: atoms, symmetry operations, polarization real(DP) , allocatable :: xau (:,:) real(DP) :: ft (3) ! allocate (xau(3,nat)) ! ! compute the atomic coordinates in crystal axis, xau ! do na = 1, nat do ipol = 1, 3 xau (ipol, na) = bg (1, ipol) * tau (1, na) + & bg (2, ipol) * tau (2, na) + & bg (3, ipol) * tau (3, na) enddo enddo ! ! for each symmetry operation, compute the atomic coordinates ! of the rotated atom, ft, and calculate rtau = Stau'-tau ! rtau(:,:,:) = 0.0_dp do isym = 1, nsym if (sym (isym) ) then do na = 1, nat nb = irt (isym, na) do ipol = 1, 3 ft (ipol) = s (1, ipol, isym) * xau (1, na) + & s (2, ipol, isym) * xau (2, na) + & s (3, ipol, isym) * xau (3, na) - xau (ipol, nb) enddo do ipol = 1, 3 rtau (ipol, isym, na) = at (ipol, 1) * ft (1) + & at (ipol, 2) * ft (2) + & at (ipol, 3) * ft (3) enddo enddo endif enddo ! ! deallocate workspace ! deallocate(xau) return end subroutine sgam_ph ! !----------------------------------------------------------------------- subroutine smallg_q (xq, modenum, at, bg, nrot, s, ftau, sym, minus_q) !----------------------------------------------------------------------- ! ! This routine selects, among the symmetry matrices of the point group ! of a crystal, the symmetry operations which leave q unchanged. ! Furthermore it checks if one of the above matrices send q --> -q+G. ! In this case minus_q is set true. ! ! input-output variables ! USE kinds, ONLY : DP implicit none real(DP) :: bg (3, 3), at (3, 3), xq (3) ! input: the reciprocal lattice vectors ! input: the direct lattice vectors ! input: the q point of the crystal integer :: s (3, 3, 48), nrot, ftau (3, 48), modenum ! input: the symmetry matrices ! input: number of symmetry operations ! input: fft grid dimension (units for ftau) ! input: fractionary translation of each symmetr ! input: main switch of the program, used for ! q<>0 to restrict the small group of q ! to operation such that Sq=q (exactly, ! without G vectors) when iswitch = -3. logical :: sym (48), minus_q ! input-output: .true. if symm. op. S q = q + G ! output: .true. if there is an op. sym.: S q = - q + G ! ! local variables ! real(DP) :: aq (3), raq (3), zero (3) ! q vector in crystal basis ! the rotated of the q vector ! the zero vector integer :: irot, ipol, jpol ! counter on symmetry op. ! counter on polarizations ! counter on polarizations logical :: eqvect ! logical function, check if two vectors are equa ! ! return immediately (with minus_q=.true.) if xq=(0,0,0) ! minus_q = .true. if ( (xq (1) == 0.d0) .and. (xq (2) == 0.d0) .and. (xq (3) == 0.d0) ) & return ! ! Set to zero some variables ! minus_q = .false. zero(:) = 0.d0 ! ! Transform xq to the crystal basis ! aq = xq call cryst_to_cart (1, aq, at, - 1) ! ! Test all symmetries to see if this operation send Sq in q+G or in -q+G ! do irot = 1, nrot if (.not.sym (irot) ) goto 100 raq(:) = 0.d0 do ipol = 1, 3 do jpol = 1, 3 raq(ipol) = raq(ipol) + DBLE( s(ipol,jpol,irot) ) * aq( jpol) enddo enddo !THIS IS were we get -q +G from .... sym (irot) = eqvect (raq, aq, zero) ! ! if "iswitch.le.-3" (modenum.ne.0) S must be such that Sq=q exactly ! ! if (modenum.ne.0 .and. sym(irot) ) then do ipol = 1, 3 sym(irot) = sym(irot) .and. (abs(raq(ipol)-aq(ipol)) < 1.0d-5) enddo endif !HL SYMMFIX? if (sym (irot) .and..not.minus_q) then ! l'istruzione "originale" in kreductor era la seguente... ! if (.not. minus_q) then raq = - raq minus_q = eqvect (raq, aq, zero) endif 100 continue enddo ! ! if "iswitch.le.-3" (modenum.ne.0) time reversal symmetry is not included ! ! if (modenum.ne.0) minus_q = .false. ! return end subroutine smallg_q