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A. Noncollinear generalization of DFT

The noncollinear spin version of the Kohn-Sham equation can be written as

[ 23 [t 5] (5) <) "

where [ is 2 X 2 unit matrix. 7(r) and exchange-correlation potential become 2 X 2 matrix. The density matrix p(r) can be
written as

pop(r) = D W (O (), where a,f =12 @)

which using Pauli matrix o, can be decomposed into a scalar and a vectorial part corresponding to the charge and magnetization
density:

pE) = S0 + () = 2( o e m"(r)'imy(r))

my(r) + imy(r) n(r) — my(r)
Likewise, the potential matrix can then be written in the form of a scalar potential and a magnetic field B(r)

v(r) = v(r)I + upo - B(r) 3)
V2elr) = V(O] + ppor - Bye(r) “4)
where g is the Bohr magneton. Finally, to simplify the notation, the noncollinear spin Kohn-Sham equation can be recast as,

V2
[(—7 + veff<r>) I+ ppor- Beff<r)}$i<r> = &9i(r) )

Where V., is the total scalar potential and B, is the total effective magnetic field.

B. Local approximation to exchange-correlation functional with noncollinear spin density

The collinear exchange-correlation functional is in the form of

Exc = Exc{plspZ} = fn(r)fxc[pl(r)7p2(r)]dr (6)

where n(r) = p1(r) + pa(r). p1, p2 is the up and down spin density respectively. In the noncollinear spin case, pqs is not
necessarily diagonal. However, assume there is a unitary transformation, U, which can diagonalize it locally, i.e. for i=1, 2,

Z UiapapU, +,,~ = pi (N
aff

with all quantities dependent on r. U can be expressed in spln- rotation matrix with rotation angle 6 and ¢. Then the effective
single-particle potential matrix can be written as,

Wepp(r) = VeI + AV(r)o ®)



where &7, is the z component of the Pauli matrix in a coordinate system which is rotated by the polar angles 6 and ¢ with respect
to some global coordination system,

- cosf e ®sing
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By mapping to Eq. 5, the local effective magnetic field is expressed as

Biff(r),ug = AV(r)cosé )
B (t)ug = AV(r)cos ¢sinf (10)
Bsz(r)/xg = AV(r)sin¢sin6 (11)
Veyr(r) is given by
nx) ., 1
Verr(r) = v(r) +2 dr’ + = [V (1) + viea ()] (12)
r —r’| 2
furthermore,
OE .. 0€xc
Veei(T) = = &x(p1,02) + 1 (13)
opi Opi
and
1
AV(I‘) = E[chl (I‘) - chZ(r)] (14)

we can see that when 6 = ¢ = 0 holds globally, W, goes back to the form of collinear spin case.

C. First-order time dependent perturbation theory

. . — — ; . .
If the perturbed wave function is written as [¢;(r) + 6y ;(r,f)]e™!, the equation for standard time dependent first-order
perturbation theory is then

(H = 030 i(x.1) + (6Ver] + 1poBeg o) i(x) = 0 (15)

where 6_zﬂ),-(r, 1) is the first order change of the wave function, 6V, and 0B, are the first-order changes of effetive electric
potential and magnetic field due to the external perturbation. In frequency space, Eq. 15 is

(H = & + )00 (X, ) + [6Ver (X, ) + ppooBes(r, )] i(r) = 0 (16)

. . - i . . .
If we write the bloch wave function as ¥/ (r) = e’k"TZ',f(r), then in the case of monochromatic perturbations 0B, (r,7) =
Sbe'Telle™ + ¢ c., Bq. 16 can be written as

(H*9 — € + )i (r, w) + [V, (r,w) + pporoB, (. ) [7K(r) = 0 (17)

- -
where 6u:(+q(r, w) is the periodic parts of k+q Fourier component of the first order correction of the wave function, i.e. élf/lfq(r) =

ek 0T5 () The effective potential is written as 6V, 7,0 = Ygu oV AT, w)e 4T with the effective magnetic field in
the same form. The Fourier compoments of first-order change of charge density can be written as:

Sni(r, w) = Z[ﬂ"‘*|1|57¢"+%r, W) + S (e, —w)I[7¥] (18)
k
Sni(r, —w) = Z[ﬂ"‘*|1|571“+%r, —w) + S, )T (19)
k
Sn79(r, —w) = Z[ﬂ’k*|1|57¢"ﬂ(r, —w) + U (r, W)ITIX] = Sn% (r, w) (20)
k
onY(r,w) =

DG, ) + S (e~ )] = 61 (1. ~w) @
k



where * means complex conjugate. The first order change of magnetization follows the same set of equations with unit matrix I
substitued by Pauli matrix o

In the presence of time reversal symmetry, e.g. paramagnetic system without external magnetic field, u**4(r,w) =
u %9 (r, w). Eq. 18 can then be recasted as

oni(r,w) = [ I(r, w) + 5uF 8 (r, —w)uk) (22)
= Zk:[uk*6uk+q(r, w) + 6u™¥(r, —w)u ] (23)
= Zk:[uk*au“*‘l(r, w) + 6u*TI(r, —w)u*] (24)
= Zk: U [6u H9(r, w) + 6u*TI(r, —w)] (25)
K

Following the same logic, Eq. 19 can be recasted as

oni(r, —w) = Z[uk*éuk+q(r, —w) + U (r, W)k (26)
= i[uk*éu“q(r, —w) + 6u*M(r, w)u ] 27
= zk:[uk*du'“q(r, —w) + u*HI(r, w)u**] (28)
= Zk:uk*[éuk“l(r,w)+5uk+%r, -w)] (29)
= 61;1‘1(1‘, w) (30)

Now Eq. 17 can be solved in the q component of the effective potential with +w,
(H¥ — k& w)ﬁiﬁ‘*q(r, +w) + [6V (v, ) + upodBy, (r, w)[i¥x) =0 (31)

However, in a general system with noncollinear spin density or with the presence of an external magnetic field, time reversal
is broken. In this case, Eq. 17 could be solved using a set of two equations,

(H — e + w)5uf ™ (r,w) + [6VY (v, w) + upooBY, (v, w)[2¥(r) = 0 (32)
(H = e = )5, —w) + [V, (1, ~w) + ppordB L (r,—o)[EE) = 0 (33)

with the charge density response énl(r, w) and 6n~9(r, —w) calculated using Eq. 18 and Eq. 20 respectively.

D. Plane wave basis



