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A. Noncollinear generalization of DFT

The noncollinear spin version of the Kohn-Sham equation can be written as(−∇2
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(
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where I is 2 × 2 unit matrix. ṽ(r) and exchange-correlation potential become 2 × 2 matrix. The density matrix ρ(r) can be
written as

ραβ(r) =
∑

i

ψα∗i (r)ψβi (r), where α, β = 1, 2 (2)

which using Pauli matrix σ, can be decomposed into a scalar and a vectorial part corresponding to the charge and magnetization
density:

ρ(r) =
1
2

(n(r)I + σ ·m(r)) =
1
2

(
n(r) + mz(r) mx(r) − imy(r)

mx(r) + imy(r) n(r) − mz(r)

)
Likewise, the potential matrix can then be written in the form of a scalar potential and a magnetic field B(r)

˜v(r) = v(r)I + µBσ · B(r) (3)

˜vxc(r) = vxc(r)I + µBσ · Bxc(r) (4)

where µB is the Bohr magneton. Finally, to simplify the notation, the noncollinear spin Kohn-Sham equation can be recast as,

[(
−
∇2

2
+ Ve f f (r)

)
I + µBσ · Be f f (r)

]
−→
ψ i(r) = εi

−→
ψ i(r) (5)

Where Ve f f is the total scalar potential and Be f f is the total effective magnetic field.

B. Local approximation to exchange-correlation functional with noncollinear spin density

The collinear exchange-correlation functional is in the form of

Exc = Exc{ρ1, ρ2} =

∫
n(r)εxc[ρ1(r), ρ2(r)]dr (6)

where n(r) = ρ1(r) + ρ2(r). ρ1, ρ2 is the up and down spin density respectively. In the noncollinear spin case, ραβ is not
necessarily diagonal. However, assume there is a unitary transformation, U, which can diagonalize it locally, i.e. for i=1, 2,∑

αβ

Ui,αραβU
†

β,i = ρi (7)

with all quantities dependent on r. U can be expressed in spin- 1
2 rotation matrix with rotation angle θ and φ. Then the effective

single-particle potential matrix can be written as,

We f f (r) = Ve f f (r)I + ∆V(r)σ̃z (8)
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where σ̃z is the z component of the Pauli matrix in a coordinate system which is rotated by the polar angles θ and φ with respect
to some global coordination system,

σ̃z =

[
cos θ e−iφ sin θ

eiφ sin θ − cos θ

]
By mapping to Eq. 5, the local effective magnetic field is expressed as

Bz
e f f (r)µB = ∆V(r) cos θ (9)

Bx
e f f (r)µB = ∆V(r) cos φ sin θ (10)

By
e f f (r)µB = ∆V(r) sin φ sin θ (11)

Ve f f (r) is given by

Ve f f (r) = v(r) + 2
∫

n(r′)
|r − r′|

dr′ +
1
2

[vxc1(r) + vxc2(r)] (12)

furthermore,

vxci(r) =
δExc

δρi
= εxc(ρ1, ρ2) + n

∂εxc

∂ρi
(13)

and

∆V(r) =
1
2

[vxc1(r) − vxc2(r)] (14)

we can see that when θ = φ = 0 holds globally, We f f goes back to the form of collinear spin case.

C. First-order time dependent perturbation theory

If the perturbed wave function is written as [
−→
ψ i(r) + δ

−→
ψ i(r, t)]e−iεit, the equation for standard time dependent first-order

perturbation theory is then

(H − i∂tI)δ
−→
ψ i(r, t) + (δVe f f I + µBδBe f fσ)

−→
ψ i(r) = 0 (15)

where δ
−→
ψ i(r, t) is the first order change of the wave function, δVe f f and δBe f f are the first-order changes of effetive electric

potential and magnetic field due to the external perturbation. In frequency space, Eq. 15 is

(H − εi + ω)δ
−→
ψ i(r, ω) + [δVe f f (r, ω) + µBσδBe f f (r, ω)]

−→
ψ i(r) = 0 (16)

If we write the bloch wave function as
−→
ψk

n(r) = eik·r−→u k
n(r), then in the case of monochromatic perturbations δBext(r, t) =

δbeiq0·reiω0te−ηt + c.c., Eq. 16 can be written as

(Hk+q − εk
i + ω)

−→
δuk+q

i (r, ω) + [δVq
e f f (r, ω) + µBσδBq

e f f (r, ω)]−→u k
i (r) = 0 (17)

where
−→
δuk+q

i (r, ω) is the periodic parts of k+q Fourier component of the first order correction of the wave function, i.e.
−→
δψ

k+q
n (r) =

ei(k+q)·r−→δuk+q
n (r). The effective potential is written as δVe f f (r, t) =

∑
q,ω δV

q
e f f (r, ω)ei(q·r+ωt) with the effective magnetic field in

the same form. The Fourier compoments of first-order change of charge density can be written as:

δnq(r, ω) =
∑

k

[−→u k∗|I|
−→
δuk+q(r, ω) +

−→
δuk−q∗(r,−ω)|I|−→u k] (18)

δnq(r,−ω) =
∑

k

[−→u k∗|I|
−→
δuk+q(r,−ω) +

−→
δuk−q∗(r, ω)|I|−→u k] (19)

δn−q(r,−ω) =
∑

k

[−→u k∗|I|
−→
δuk−q(r,−ω) +

−→
δuk+q∗(r, ω)|I|−→u k] = δnq∗(r, ω) (20)

δn−q(r, ω) =
∑

k

[−→u k∗|I|
−→
δuk−q(r, ω) +

−→
δuk+q∗(r,−ω)|I|−→u k] = δnq∗(r,−ω) (21)
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where * means complex conjugate. The first order change of magnetization follows the same set of equations with unit matrix I
substitued by Pauli matrix σ.

In the presence of time reversal symmetry, e.g. paramagnetic system without external magnetic field, uk+q(r, ω) =

u−k−q∗(r, ω). Eq. 18 can then be recasted as

δnq(r, ω) =
∑

k

[uk∗δuk+q(r, ω) + δuk−q∗(r,−ω)uk] (22)

=
∑

k

[uk∗δuk+q(r, ω) + δu−k+q(r,−ω)u−k∗] (23)

=
∑

k

[uk∗δuk+q(r, ω) + δuk+q(r,−ω)uk∗] (24)

=
∑

k

uk∗[δuk+q(r, ω) + δuk+q(r,−ω)] (25)

Following the same logic, Eq. 19 can be recasted as

δnq(r,−ω) =
∑

k

[uk∗δuk+q(r,−ω) + δuk−q∗(r, ω)uk] (26)

=
∑

k

[uk∗δuk+q(r,−ω) + δu−k+q(r, ω)u−k∗] (27)

=
∑

k

[uk∗δuk+q(r,−ω) + δuk+q(r, ω)uk∗] (28)

=
∑

k

uk∗[δuk+q(r, ω) + δuk+q(r,−ω)] (29)

= δnq(r, ω) (30)

Now Eq. 17 can be solved in the q component of the effective potential with ±ω,

(Hk+q − εk
i ± ω)

−→
δuk+q

i (r,±ω) + [δVq
e f f (r, ω) + µBσδBq

e f f (r, ω)]−→u k
i (r) = 0 (31)

However, in a general system with noncollinear spin density or with the presence of an external magnetic field, time reversal
is broken. In this case, Eq. 17 could be solved using a set of two equations,

(Hk+q − εk
i + ω)

−→
δuk+q

i (r, ω) + [δVq
e f f (r, ω) + µBσδBq

e f f (r, ω)]−→u k
i (r) = 0 (32)

(Hk−q − εk
i − ω)

−→
δuk−q

i (r,−ω) + [δV−q
e f f (r,−ω) + µBσδB−q

e f f (r,−ω)]−→u k
i (r) = 0 (33)

with the charge density response δnq(r, ω) and δn−q(r,−ω) calculated using Eq. 18 and Eq. 20 respectively.

D. Plane wave basis


