! !---------------------------------------------------------------- module gspace !---------------------------------------------------------------- ! use parameters, only : DP, nat ! integer :: ngm, ngl, ngm0, ngms ! number of G-vectors corresponding to ecut ! number of G-shells ! number of G-vectors corresponding to ecut0 ! number of G-vectors corresponding to ecuts integer :: nr1, nr2, nr3, nr integer :: nr1s, nr2s, nr3s, nrs ! nr?s is for the Sigma cutoff ! in espresso this is reserved for the box cutoff, ! so we will need to change name at some point ! integer, allocatable :: igtongl(:), nl(:) real(DP), allocatable :: g(:,:), gl(:) real(DP) :: at (3,3), bg (3,3) integer, allocatable :: nls(:) ! fft correspondence for the Sigma cutoff ! real(DP) :: tau (3,nat) ! integer, allocatable :: gmap(:,:) ! map of G-vectors for folding k+q into first BZ real(DP) :: g0vec(3,27) ! the folding vectors ! end module gspace ! !---------------------------------------------------------------- module constants !---------------------------------------------------------------- ! use parameters, only : DP, alat ! real(DP), parameter :: pi = 3.14159265358979d0 real(DP), parameter :: twopi = 2.d0 * pi real(DP), parameter :: two = 2.d0 real(DP), parameter :: tpiba = 2.d0 * pi / alat real(DP), parameter :: tpiba2 = tpiba**2 real(DP), parameter :: four = 4.d0 real(DP), parameter :: fpi = four * pi real(DP), parameter :: zero = 0.d0 real(DP), parameter :: one = 1.d0 real(DP), parameter :: ryd2ev = 13.6058 real(DP), parameter :: e2 = 2.d0 ! the square of the electron charge complex(DP), parameter :: czero = (0.d0, 0.d0) complex(DP), parameter :: cone = (1.d0, 0.d0) complex(DP), parameter :: ci = (0.d0, 1.d0) ! end module constants ! !---------------------------------------------------------------- module kspace !---------------------------------------------------------------- ! use parameters, only : DP ! real(kind=DP), allocatable :: xk (:,:), wk(:) real(kind=DP), allocatable :: xq (:,:), wq(:), eval_occ(:,:) ! k-point grid for the calculation of the screened Coulomb interaction ! corresponding weights ! end module kspace !