GW-HS

GW — Haydock — Sternheimer
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GWHS basic steps

Choose K, for Z(kp) .

Generate uniform {q} grid for

the screened Coulomb interaction W o o2
O/v
Generate uniform {k,-q} grid for
the Green’s function G T *
/R

Calculate Green'’s function for every ky-q point




GWHS basic steps

For every q vector calculate W(q)




GWHS basic steps

For every q vector calculate W(q) \ :)
® (] L (] ®
® L ® L ®
We need the variation of the charge density oo o% o® o © o
- BZ integral ./.v — ot

Set {k} grid equal to {q} grid C") ° ¢ ° 0

Solve Sternheimer for every k of {k}. ¢ o o o o

This requires also the k+q eigenstates - fold k+q into {k} grid using G-vector maps
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® The occupied wavefunctions are calculated only once at the beginning on the {q} grid

® |f we change k, for 2(k;), we only need to re-compute the Green’s function,
the screened Coulomb stays unchanged
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® The occupied wavefunctions are calculated only once at the beginning on the {q} grid

® |f we change k, for 2(k;), we only need to re-compute the Green’s function,
the screened Coulomb stays unchanged

What about the frequency ?

Same idea:

Choose w for X(wj)

Generate uniform {w} grid for
the screened Coulomb interaction W

Generate uniform {w,-w} grid for
the Green’s function G

® |f we change w, there is no extra cost since Haydock is frequency-independent



GWHS basic steps

G-spheres

Direct product in real space: X(r,r’) = G(r,r’) W(r,r")

Determine Green'’s function for every (G,G’), small cutoff
Determine W(G,G’) for every G, small cutoff

wavefunction cutoff

FFT of Green’s function to coarse real-space grid
FFT of W to coarse real-space grid

> = G W product in real space

I-FFT of X to G-space (small cutoff)



GWHS basic steps

G-spheres

Direct product in real space: X(r,r’) = G(r,r’) W(r,r")

Determine Green'’s function for every (G,G’), small cutoff
Determine W(G,G’) for every G, small cutoff

wavefunction cutoff

FFT of Green’s function to coarse real-space grid
FFT of W to coarse real-space grid

> = G W product in real space

I-FFT of X to G-space (small cutoff) Haydock works fine in G-space



Work in progress

® Frequency integration
(need to use disk to store W at each frequency)

® Restart of Sternheimer at various q and w with previous guess
| do not get any improvement in convergence — need to understand

® |s G-basis optimal or we can still exploit the periodic sinc functions?

TODO

e Comparison with BerkeleyGW: plasmon-pole?

® scaling test on silicon supercell



scaling

Green'’s function Ng X 4 x (Ngg X (Ngs -1)/2 Lanczos chains )

each chain:
Nit lanczos X ( 2 scalar products + 1 Hamiltonian application )
Screened Coulomb Ny X Ng X Ngg X ( Nt scr X ( Ny X 4 x CG sequences ) )

each sequence:
Nit o X Nog X ( 2 scalar products + 1 Hamiltonian application )

TOTAL 4 x Nq X NGs X ( Nw X Nit_SCF X Nq X Nit_CG X Nocc + (NGs - 1)/2 X Nit_lanczos )
X ( 2 scalar products + 1 Hamiltonian application )



Scaling of Hybertsen/Louie

Calculation of empty states ~ Ngg X Nyge X Neoty X N X N, scalar products

Optical matrix elements Nempty X Ng ( CG sequences )

each sequence:
Nii cg X ( 2 scalar products + 1 Hamiltonian application )

Inversion of epsilon N,, X Ny x 4/3( Ngg )3

(assuming inversion by LU decomposition)

TOTAL Ng X Nempty X ( Ngs X Noge X N + 2 X Ny o ) (scalar products )
+ Ng X Ngmpty X Nit ¢ ( Hamiltonian application )
+ Ny X Ny, X (Ngg )°



Comparison

Assumption
Large systems, Gamma point sampling

Hybertsen/Louie Nge X Ngge X Nempty (scalar product )
Haydock/Sternheimer Ngs X Noge X 4 X Ny scr X Nyt ¢ ( Hamiltonian application )
Nat2
Nempty (scalar product ) — This goes as Ng, x Nempty
4 X Nyt scr X Ny ¢ ( Hamiltonian application ) — This goes as Ng, x log Ng,
H=T+V

T is applied in O(Ng) operations
V requires 3 FFTs and 1 O(Ng) operation. FFTs take 3NglogNg operations



Comparison

Assumption
Large systems, Gamma point sampling

Hybertsen/Louie Ngs X Nogo X Ngp X Nempy
Haydock/Sternheimer Ngs X Noee X Ngp X 10gNg, X 12 X Nt scr X N ¢
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Comparison

Assumption
Large systems, Gamma point sampling

Hybertsen/Louie Ngs X Nogo X Ngp X Nempy
Haydock/Sternheimer Ngs X Noce X Ngp X 10gNgp X 12 X Nyt scr X Nit_ca
Hybertsen/Louie Ng*
Haydock/Sternheimer N, logN,; — PLANEWAVES
N, — LOCAL ORBITALS

Hy in local orbitals is a O(N) operation



Comparison

CONCLUSION

® Planewaves: The use of Hy operations instead of sums over empty states has a better
scaling thanks to FFTs — O (NlogN)

® | ocal orbitals: The use of Hy operations instead of sums over empty states has a better
scaling thanks to sparseness O(N)



Hbar



