! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine dvqpsi_us (igpert, ik, uact, addnlcc) !---------------------------------------------------------------------- ! ! This routine calculates dV_bare/dtau * psi for one perturbation ! with a given q. The displacements are described by a vector u. ! The result is stored in dvpsi. The routine is called for each k point ! and for each pattern u. It computes simultaneously all the bands. ! It implements Eq. B29 of PRB 64, 235118 (2001). The contribution ! of the local pseudopotential is calculated here, that of the nonlocal ! pseudopotential in dvqpsi_us_only. ! ! HL- FORMERLY this routine does what it says up there. I've commented out the stuff I think pertains ! to initializing a phonon perturbation. Then stuck the igpert counter in so that I can switch on ! one fourier component of the perturbing potential, then FFT it to real space, and continue on the way. ! USE kinds, only : DP USE ions_base, ONLY : nat, ityp USE cell_base, ONLY : tpiba USE gvect, ONLY : nrxx, eigts1, eigts2, eigts3, ig1,ig2,ig3, g, nl, & ngm, nr1,nr2,nr3,nrx1,nrx2,nrx3 USE gsmooth, ONLY : nrxxs, ngms, doublegrid, nls, & nr1s, nr2s, nr3s, nrx1s, nrx2s, nrx3s USE lsda_mod, ONLY : lsda, isk USE noncollin_module, ONLY : npol use uspp_param,ONLY : upf USE wvfct, ONLY : nbnd, npw, npwx, igk USE wavefunctions_module, ONLY: evc USE nlcc_gw, ONLY : nlcc_any, drc USE eqv, ONLY : dvpsi, dmuxc, vlocq USE qpoint, ONLY : npwq, igkq, xq, eigqts, ikks implicit none ! ! The dummy variables ! integer :: ik, igpert ! input: the k point ! counter for G-vector for plane wave perturbation complex(DP) :: uact (3 * nat) ! input: the pattern of displacements logical :: addnlcc ! ! And the local variables ! integer :: na, mu, ikk, ig, nt, ibnd, ir, is, ip ! counter on atoms ! counter on modes ! the point k ! counter on G vectors ! the type of atom ! counter on bands ! counter on real mesh complex(DP) :: gtau, gu, fact, u1, u2, u3, gu0 complex(DP) , allocatable, target :: aux (:) complex(DP) , allocatable :: aux1 (:), aux2 (:) complex(DP) , pointer :: auxs (:) ! work space call start_clock ('dvqpsi_us') if (nlcc_any.and.addnlcc) then allocate (aux( nrxx)) if (doublegrid) then allocate (auxs( nrxxs)) else auxs => aux endif endif allocate (aux1( nrxxs)) allocate (aux2( nrxxs)) ! ! We start by computing the contribution of the local potential. ! The computation of the derivative of the local potential is done in ! reciprocal space while the product with the wavefunction is done in ! real space ! ikk = ikks(ik) dvpsi(:,:) = (0.d0, 0.d0) aux1(:) = (0.d0, 0.d0) #if 0 do na = 1, nat fact = tpiba * (0.d0, -1.d0) * eigqts (na) mu = 3 * (na - 1) if (abs (uact (mu + 1) ) + abs (uact (mu + 2) ) + abs (uact (mu + & 3) ) .gt.1.0d-12) then nt = ityp (na) u1 = uact (mu + 1) u2 = uact (mu + 2) u3 = uact (mu + 3) gu0 = xq (1) * u1 + xq (2) * u2 + xq (3) * u3 do ig = 1, ngms gtau = eigts1 (ig1 (ig), na) * eigts2 (ig2 (ig), na) * eigts3 ( & ig3 (ig), na) gu = gu0 + g (1, ig) * u1 + g (2, ig) * u2 + g (3, ig) * u3 aux1 (nls (ig) ) = aux1 (nls (ig) ) + vlocq (ig, nt) * gu * & fact * gtau enddo endif enddo #endif !one plane wave HL !aux1 (nls (igpert) ) = (1.d0, 0.d0) !write (6, '("igpert ", i4)' )igpert aux1 ( nl (igpert) ) = (1.d0, 0.d0) !do ig = 1 , 10 !write(6,'("vlocq = ", 3f7.3)') vlocq(ig, 1) !enddo ! ! add NLCC when present ! if (nlcc_any.and.addnlcc) then aux(:) = (0.d0, 0.d0) do na = 1,nat fact = tpiba*(0.d0,-1.d0)*eigqts(na) mu = 3*(na-1) if (abs(uact(mu+1))+abs(uact(mu+2)) & +abs(uact(mu+3)).gt.1.0d-12) then nt=ityp(na) u1 = uact(mu+1) u2 = uact(mu+2) u3 = uact(mu+3) gu0 = xq(1)*u1 +xq(2)*u2+xq(3)*u3 if (upf(nt)%nlcc) then do ig = 1,ngm gtau = eigts1(ig1(ig),na)* & eigts2(ig2(ig),na)* & eigts3(ig3(ig),na) gu = gu0+g(1,ig)*u1+g(2,ig)*u2+g(3,ig)*u3 aux(nl(ig))=aux(nl(ig))+drc(ig,nt)*gu*fact*gtau enddo endif endif enddo call cft3(aux,nr1,nr2,nr3,nrx1,nrx2,nrx3,+1) if (.not.lsda) then do ir=1,nrxx aux(ir) = aux(ir) * dmuxc(ir,1,1) end do else is=isk(ikk) do ir=1,nrxx aux(ir) = aux(ir) * 0.5d0 * & (dmuxc(ir,is,1)+dmuxc(ir,is,2)) enddo endif call cft3(aux,nr1,nr2,nr3,nrx1,nrx2,nrx3,-1) if (doublegrid) then auxs(:) = (0.d0, 0.d0) do ig=1,ngms auxs(nls(ig)) = aux(nl(ig)) enddo endif aux1(:) = aux1(:) + auxs(:) endif ! !PH- Now we compute dV_loc/dtau in real space !HL- FFT dvbare into R space and compute Delta V_q(r')*Psi_nk(r') ! call cft3s (aux1, nr1s, nr2s, nr3s, nrx1s, nrx2s, nrx3s, + 1) do ibnd = 1, nbnd do ip=1,npol aux2(:) = (0.d0, 0.d0) if (ip==1) then do ig = 1, npw aux2 (nls (igk (ig) ) ) = evc (ig, ibnd) enddo else do ig = 1, npw aux2 (nls (igk (ig) ) ) = evc (ig+npwx, ibnd) enddo end if ! ! This wavefunction is computed in real space ! call cft3s (aux2, nr1s, nr2s, nr3s, nrx1s, nrx2s, nrx3s, + 2) do ir = 1, nrxxs aux2 (ir) = aux2 (ir) * aux1 (ir) enddo ! ! and finally dV_loc/dtau * psi is transformed in reciprocal space ! call cft3s (aux2, nr1s, nr2s, nr3s, nrx1s, nrx2s, nrx3s, - 2) if (ip==1) then do ig = 1, npwq dvpsi (ig, ibnd) = aux2 (nls (igkq (ig) ) ) enddo else do ig = 1, npwq dvpsi (ig+npwx, ibnd) = aux2 (nls (igkq (ig) ) ) enddo end if enddo enddo ! !HL FFT how it works? !This should recover the perturbing potential in G space. ! write (6, '("")' ) ! do ig = 1, 3 ! write (6, '("dvbare(nl(igpert)) ", 3f7.4, 3f7.3)' )aux1(nl(ig)) ! end do ! call cft3 (aux1, nr1, nr2, nr3, nrx1, nrx2, nrx3, -1) ! call cft3 (aux1, nr1s, nr2s, nr3s, nrx1s, nrx2s, nrx3s, -1) ! write(6, '("")') ! do ig = 1, 3 ! write (6, '("dvbare(nl(igpert)) ", 3f7.4, 3f7.3)' )aux1(nl(ig)) ! write (6, '("dvbare(nl(igpert)) ", 3f7.4, 3f7.3)' )aux1(ig) ! end do !HL This does recover the correct array of fourier components. I think drho should transform in exactly the same way. ! deallocate (aux2) deallocate (aux1) if (nlcc_any.and.addnlcc) then deallocate (aux) if (doublegrid) deallocate (auxs) endif ! We add the contribution of the nonlocal potential in the US form ! First a term similar to the KB case. ! Then a term due to the change of the D coefficients. ! HL I don't think we need to add anything else to the right hand side. ! No change in Q, Beta, or S of the self-consistent potential. Just the shift due to ! electrons. However there may be a residual term due to the NLCC when form the pseudopotential which ! needs to be added... Solution: Don't use NLCC for the time being... !HL call dvqpsi_us_only (ik, uact) call stop_clock ('dvqpsi_us') return end subroutine dvqpsi_us