! This file is copied and modified from QUANTUM ESPRESSO ! Kun Cao, Henry Lambert, Feliciano Giustino ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- subroutine symm(phi, u, xq, s, isym, rtau, irt, at, bg, nat) !----------------------------------------------------------------------- ! ! This routine symmetrizes the matrix of electron-phonon coefficients ! written in the basis of the modes ! USE kinds, ONLY: DP USE constants, ONLY: tpi ! implicit none integer, intent (in) :: nat, s (3,3,48), irt (48, nat), isym ! input: the number of atoms ! input: the symmetry matrices ! input: the rotated of each atom ! input: the small group of q real(DP), intent (in) :: xq (3), rtau (3, 48, nat), at (3, 3), bg (3, 3) ! input: the coordinates of q ! input: the R associated at each r ! input: direct lattice vectors ! input: reciprocal lattice vectors complex(DP), intent(in) :: u(3*nat,3*nat) ! input: patterns complex(DP), intent(inout) :: phi(3*nat,3*nat) ! input: matrix to be symmetrized , output: symmetrized matrix integer :: i, j, icart, jcart, na, nb, mu, nu, sna, snb, & ipol, jpol, lpol, kpol ! counters real(DP) :: arg ! complex(DP) :: fase, work, phi1(3,3,nat,nat), phi2(3,3,nat,nat) ! workspace ! ! First we transform to cartesian coordinates ! do i = 1, 3 * nat na = (i - 1) / 3 + 1 icart = i - 3 * (na - 1) do j = 1, 3 * nat nb = (j - 1) / 3 + 1 jcart = j - 3 * (nb - 1) work = (0.d0, 0.d0) do mu = 1, 3 * nat do nu = 1, 3 * nat work = work + u(i,mu) * phi(mu,nu) * conjg(u(j,nu)) enddo enddo phi1(icart,jcart,na,nb) = work enddo enddo ! ! Then we transform to crystal axis ! do na = 1, nat do nb = 1, nat call trntnsc (phi1(1,1,na,nb), at, bg, - 1) enddo enddo ! ! And we symmetrize in this basis ! do na = 1, nat do nb = 1, nat sna = irt (isym, na) snb = irt (isym, nb) arg = 0.d0 do ipol = 1, 3 arg = arg + (xq(ipol)*(rtau(ipol,isym,na) - rtau(ipol,isym,nb))) enddo arg = arg * tpi fase = CMPLX(DCOS (arg), DSIN (arg) ,kind=DP) do ipol = 1, 3 do jpol = 1, 3 phi2(ipol,jpol,na,nb) = (0.0d0,0.0d0) do kpol = 1, 3 do lpol = 1, 3 phi2(ipol,jpol,na,nb) = phi2(ipol,jpol,na,nb) + & s(ipol,kpol,isym) * s(jpol,lpol,isym) * & phi1(kpol,lpol,sna,snb) * fase enddo enddo enddo enddo enddo enddo ! ! Back to cartesian coordinates ! do na = 1, nat do nb = 1, nat call trntnsc (phi2 (1, 1, na, nb), at, bg, + 1) enddo enddo ! ! rewrite as an array with dimensions 3nat x 3nat ! do i = 1, 3 * nat na = (i - 1) / 3 + 1 icart = i - 3 * (na - 1) do j = 1, 3 * nat nb = (j - 1) / 3 + 1 jcart = j - 3 * (nb - 1) phi (i, j) = phi2 (icart, jcart, na, nb) enddo enddo ! return end subroutine symm