! This file is copied and modified from QUANTUM ESPRESSO ! Kun Cao, Henry Lambert, Feliciano Giustino ! ! Copyright (C) 2001-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- subroutine mode_group & (modenum, xq, at, bg, nat, nrot, s, irt, minus_q, rtau, sym) !----------------------------------------------------------------------- ! ! This routine selects, among the symmetry matrices of the point group ! of a crystal, the symmetry operations which leave a given mode unchang ! For the moment it assume that the mode modenum displaces the atom ! modenum/3 in the direction mod(modenum,3)+1 ! USE kinds, ONLY : DP USE constants, ONLY : tpi implicit none integer, intent(in) :: nat, s (3, 3, 48), irt (48, nat), nrot, modenum ! nat : the number of atoms of the system ! s : the symmetry matrices ! irt : the rotated atom ! nrot: number of symmetry operations ! modenum: which displacement pattern real(DP), intent(in) :: xq (3), rtau (3, 48, nat), bg (3, 3), at (3, 3) ! xq : the q point ! rtau: the translations of each atom ! bg : the reciprocal lattice vectors ! at : the direct lattice vectors logical, intent(in) :: minus_q ! if true Sq=>-q+G symmetry is used logical, intent(inout) :: sym (48) ! on input: .true. if symm. op. has to be tested ! on output: .true. if symm. op. does not change mode modenum ! integer :: isym, nas, ipols, na, sna, ipol, jpol ! counters real(DP) :: arg ! auxiliary complex(DP), allocatable :: u (:,:) ! the original pattern complex(DP) :: fase, sum ! the phase of the mode ! check for orthogonality complex(DP), allocatable :: work_u (:,:), work_ru (:,:) ! the working pattern ! the rotated working pattern allocate(u(3, nat), work_u(3, nat), work_ru (3, nat)) if (modenum > 3*nat .or. modenum < 1) call errore ('mode_group', & 'wrong modenum', 1) nas = (modenum - 1) / 3 + 1 ipols = mod (modenum - 1, 3) + 1 u (:,:) = (0.d0, 0.d0) u (ipols, nas) = (1.d0, 0.d0) do na = 1, nat call trnvecc (u (1, na), at, bg, - 1) enddo do isym = 1, nrot if (sym (isym) ) then do na = 1, nat do ipol = 1, 3 work_u (ipol, na) = u (ipol, na) enddo enddo work_ru (:,:) = (0.d0, 0.d0) do na = 1, nat sna = irt (isym, na) arg = 0.d0 do ipol = 1, 3 arg = arg + xq (ipol) * rtau (ipol, isym, na) enddo arg = arg * tpi if (isym.eq.nrot.and.minus_q) then fase = CMPLX(cos (arg), sin (arg) ,kind=DP) else fase = CMPLX(cos (arg), - sin (arg) ,kind=DP) endif do ipol = 1, 3 do jpol = 1, 3 work_ru (ipol, sna) = work_ru (ipol, sna) + s (jpol, ipol, & isym) * work_u (jpol, na) * fase enddo enddo enddo ! ! Transform back the rotated pattern ! do na = 1, nat call trnvecc (work_ru (1, na), at, bg, 1) call trnvecc (work_u (1, na), at, bg, 1) enddo ! ! only if the pattern remain the same up to a phase we keep ! the symmetry ! sum = (0.d0, 0.d0) do na = 1, nat do ipol = 1, 3 sum = sum + CONJG(work_u (ipol, na) ) * work_ru (ipol, na) enddo enddo sum = abs (sum) if (abs (sum - 1.d0) .gt.1.d-7) sym (isym) = .false. endif enddo deallocate ( work_ru, work_u, u) return end subroutine mode_group