C C------------------------------------------------------------------------- SUBROUTINE DBESS(XG,L,MMAX,R,DJL) C------------------------------------------------------------------------- C CALCULATES DERIVATIVES OF SPHERICAL BESSEL FUNCTIONS j_l(Gr) C WITH RESPECT TO h_alpha,beta (WITHOUT THE FACTOR GAGK(KK,IG)*HTM1) C I.E. -x * D(jl(x))/dx IMPLICIT REAL*8 (A-H,O-Z) PARAMETER(EPS=1.E-8) REAL*8 DJL(MMAX),R(MMAX) IF(L.EQ.1) THEN ! S PART IF(XG.LT.EPS) THEN DO IR=1,MMAX DJL(IR) = 0.D0 END DO ELSE DJL(1) = 0.D0 DO IR=2,MMAX XRG=R(IR)*XG DJL(IR) = SIN(XRG)/XRG-COS(XRG) END DO ENDIF ENDIF IF(L.EQ.2) THEN ! P PART IF(XG.LT.EPS) THEN DO IR=1,MMAX DJL(IR) = 0.D0 END DO ELSE DJL(1) = 0.D0 DO IR=2,MMAX XRG=R(IR)*XG DJL(IR) = 2.D0*(SIN(XRG)/XRG-COS(XRG))/XRG - SIN(XRG) END DO ENDIF ENDIF IF(L.EQ.3) THEN ! D PART IF(XG.LT.EPS) THEN DO IR=1,MMAX DJL(IR) = 0.D0 END DO ELSE DJL(1) = 0.D0 DO IR=2,MMAX XRG=R(IR)*XG DJL(IR) = ( SIN(XRG)*(9.D0/(XRG*XRG)-4.D0) - - 9.D0*COS(XRG)/XRG ) /XRG + COS(XRG) END DO ENDIF ENDIF IF(L.EQ.4) THEN ! F PART IF(XG.LT.EPS) THEN DO IR=1,MMAX DJL(IR) = 0.D0 END DO ELSE DJL(1) = 0.D0 DO IR=2,MMAX XRG=R(IR)*XG XRG2=XRG*XRG DJL(IR)=SIN(XRG)*(60.D0/(XRG2*XRG2)-27.D0/XRG2+1.d0) $ -COS(XRG)*(60.D0/XRG2-7.D0)/XRG END DO ENDIF ENDIF IF(L.EQ.5) THEN ! G PART IF(XG.LT.EPS) THEN DO IR=1,MMAX DJL(IR) = 0.D0 END DO ELSE DJL(1) = 0.D0 DO IR=2,MMAX XRG=R(IR)*XG XRG2=XRG*XRG DJL(IR)=SIN(XRG)*(525.D0/(XRG2*XRG2)-240.D0/XRG2+11.D0)/XRG $ - COS(XRG)*(525.D0/(XRG2*XRG2)-65.D0/XRG2+1.D0) END DO ENDIF ENDIF IF(L.LE.0 .OR. L.GE.6) THEN CALL ERRORE('DBESS',' L NOT PROGRAMMED, L= ',L) END IF RETURN END