! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------- subroutine dgradcorr (rho, grho, dvxc_rr, dvxc_sr, dvxc_ss, & dvxc_s, xq, drho, nr1, nr2, nr3, nrx1, nrx2, nrx3, nrxx, nspin, & nl, ngm, g, alat, omega, dvxc) ! =================== !-------------------------------------------------------------------- ! ADD Gradient Correction contribution ! LSDA is allowed. AdC (September 1999) ! #include "f_defs.h" USE kinds, only : DP implicit none ! integer :: nr1, nr2, nr3, nrx1, nrx2, nrx3, nrxx, ngm, nl (ngm), & nspin real(kind=DP) :: rho (nrxx, nspin), grho (3, nrxx, nspin), & dvxc_rr(nrxx, nspin, nspin), dvxc_sr (nrxx, nspin, nspin), & dvxc_ss (nrxx,nspin, nspin), dvxc_s (nrxx, nspin, nspin),& g (3, ngm), xq(3), alat, omega complex(kind=DP) :: drho (nrxx, nspin), dvxc (nrxx, nspin) real(kind=DP), parameter :: epsr = 1.0d-6, epsg = 1.0d-10 real(kind=DP) :: grho2 complex(kind=DP) :: s1 complex(kind=DP) :: a (2, 2, 2), b (2, 2, 2, 2), c (2, 2, 2), & ps (2, 2), ps1 (3, 2, 2), ps2 (3, 2, 2, 2) complex(kind=DP), allocatable :: gdrho (:,:,:), h (:,:,:), dh (:) integer :: k, ipol, is, js, ks, ls allocate (gdrho( 3, nrxx , nspin)) allocate (h( 3, nrxx , nspin)) allocate (dh( nrxx)) h (:, :, :) = (0.d0, 0.d0) do is = 1, nspin call qgradient (xq, nrx1, nrx2, nrx3, nr1, nr2, nr3, nrxx, & drho (1, is), ngm, g, nl, alat, gdrho (1, 1, is) ) enddo do k = 1, nrxx grho2 = grho(1, k, 1)**2 + grho(2, k, 1)**2 + grho(3, k, 1)**2 if (nspin == 1) then ! ! LDA case ! if (abs (rho (k, 1) ) > epsr .and. grho2 > epsg) then s1 = grho (1, k, 1) * gdrho (1, k, 1) + & grho (2, k, 1) * gdrho (2, k, 1) + & grho (3, k, 1) * gdrho (3, k, 1) ! ! linear variation of the first term ! dvxc (k, 1) = dvxc (k, 1) + dvxc_rr (k, 1, 1) * drho (k, 1) & + dvxc_sr (k, 1, 1) * s1 do ipol = 1, 3 h (ipol, k, 1) = (dvxc_sr(k, 1, 1) * drho(k, 1) + & dvxc_ss(k, 1, 1) * s1 )*grho(ipol, k, 1) + & dvxc_s (k, 1, 1) * gdrho (ipol, k, 1) enddo else do ipol = 1, 3 h (ipol, k, 1) = (0.d0, 0.d0) enddo endif else ! ! LSDA case ! ps (:,:) = (0.d0, 0.d0) do is = 1, nspin do js = 1, nspin do ipol = 1, 3 ps1(ipol, is, js) = drho (k, is) * grho (ipol, k, js) ps(is, js) = ps(is, js) + grho(ipol,k,is)*gdrho(ipol,k,js) enddo do ks = 1, nspin if (is == js .and. js == ks) then a (is, js, ks) = dvxc_sr (k, is, is) c (is, js, ks) = dvxc_sr (k, is, is) else if (is == 1) then a (is, js, ks) = dvxc_sr (k, 1, 2) else a (is, js, ks) = dvxc_sr (k, 2, 1) endif if (js == 1) then c (is, js, ks) = dvxc_sr (k, 1, 2) else c (is, js, ks) = dvxc_sr (k, 2, 1) endif endif do ipol = 1, 3 ps2 (ipol, is, js, ks) = ps (is, js) * grho (ipol, k, ks) enddo do ls = 1, nspin if (is == js .and. js == ks .and. ks == ls) then b (is, js, ks, ls) = dvxc_ss (k, is, is) else if (is == 1) then b (is, js, ks, ls) = dvxc_ss (k, 1, 2) else b (is, js, ks, ls) = dvxc_ss (k, 2, 1) endif endif enddo enddo enddo enddo do is = 1, nspin do js = 1, nspin dvxc (k, is) = dvxc (k, is) + dvxc_rr (k, is, js) * drho (k, js) do ipol = 1, 3 h (ipol, k, is) = h (ipol, k, is) + & dvxc_s (k, is, js) * gdrho(ipol, k, js) enddo do ks = 1, nspin dvxc (k, is) = dvxc (k, is) + a (is, js, ks) * ps (js, ks) do ipol = 1, 3 h (ipol, k, is) = h (ipol, k, is) + & c (is, js, ks) * ps1 (ipol, js, ks) enddo do ls = 1, nspin do ipol = 1, 3 h (ipol, k, is) = h (ipol, k, is) + & b (is, js, ks, ls) * ps2 (ipol, js, ks, ls) enddo enddo enddo enddo enddo endif enddo ! linear variation of the second term do is = 1, nspin call qgrad_dot (xq, nrx1, nrx2, nrx3, nr1, nr2, nr3, nrxx, & h (1, 1, is), ngm, g, nl, alat, dh) do k = 1, nrxx dvxc (k, is) = dvxc (k, is) - dh (k) enddo enddo deallocate (dh) deallocate (h) deallocate (gdrho) return end subroutine dgradcorr ! !-------------------------------------------------------------------- subroutine qgradient (xq, nrx1, nrx2, nrx3, nr1, nr2, nr3, nrxx, & a, ngm, g, nl, alat, ga) !-------------------------------------------------------------------- ! Calculates ga = \grad a in R-space (a is also in R-space) USE kinds, only : DP USE constants, ONLY: tpi implicit none integer :: nrx1, nrx2, nrx3, nr1, nr2, nr3, nrxx, ngm, nl (ngm) complex(kind=DP) :: a (nrxx), ga (3, nrxx) real(kind=DP) :: g (3, ngm), alat, xq (3) integer :: n, ipol real(kind=DP) :: tpiba complex(kind=DP), allocatable :: aux (:), gaux (:) allocate (gaux( nrxx)) allocate (aux ( nrxx)) tpiba = tpi / alat ! bring a(r) to G-space, a(G) ... aux (:) = a(:) call cft3 (aux, nr1, nr2, nr3, nrx1, nrx2, nrx3, - 1) ! multiply by i(q+G) to get (\grad_ipol a)(q+G) ... do ipol = 1, 3 gaux (:) = (0.d0, 0.d0) do n = 1, ngm gaux(nl(n)) = CMPLX(0.d0, xq (ipol) + g (ipol, n)) * aux (nl(n)) enddo ! bring back to R-space, (\grad_ipol a)(r) ... call cft3 (gaux, nr1, nr2, nr3, nrx1, nrx2, nrx3, 1) ! ...and add the factor 2\pi/a missing in the definition of q+G do n = 1, nrxx ga (ipol, n) = gaux (n) * tpiba enddo enddo deallocate (aux) deallocate (gaux) return end subroutine qgradient !-------------------------------------------------------------------- subroutine qgrad_dot (xq, nrx1, nrx2, nrx3, nr1, nr2, nr3, nrxx, & a, ngm, g, nl, alat, da) !-------------------------------------------------------------------- ! Calculates da = \sum_i \grad_i a_i in R-space USE kinds, only : DP USE constants, ONLY: tpi implicit none integer :: nrx1, nrx2, nrx3, nr1, nr2, nr3, nrxx, ngm, nl (ngm) complex(kind=DP) :: a (3, nrxx), da (nrxx) real(kind=DP) :: xq (3), g (3, ngm), alat integer :: n, ipol real(kind=DP) :: tpiba complex(kind=DP), allocatable :: aux (:) allocate (aux (nrxx)) tpiba = tpi / alat da(:) = (0.d0, 0.d0) do ipol = 1, 3 ! copy a(ipol,r) to a complex array... do n = 1, nrxx aux (n) = a (ipol, n) enddo ! bring a(ipol,r) to G-space, a(G) ... call cft3 (aux, nr1, nr2, nr3, nrx1, nrx2, nrx3, - 1) ! multiply by i(q+G) to get (\grad_ipol a)(q+G) ... do n = 1, ngm da (nl(n)) = da (nl(n)) + & CMPLX(0.d0, xq (ipol) + g (ipol, n)) * aux(nl(n)) enddo enddo ! bring back to R-space, (\grad_ipol a)(r) ... call cft3 (da, nr1, nr2, nr3, nrx1, nrx2, nrx3, 1) ! ...add the factor 2\pi/a missing in the definition of q+G and sum da (:) = da (:) * tpiba deallocate (aux) return end subroutine qgrad_dot